APPLIED MATHEMATICS II
CHAPTER-1: SEQUENCE AND SERIES
1.1. DEFINITION AND TYPES OF SEQUENCE
SEQUENCE
Asequence is a function whose domain is the collection of all integers greater than or equal to a given integer  (usually 0 or 1) where as the range may be any set .
REAL SEQUENCE
A real sequence is a function whose domain is the collection of all integers greater than or equal to a given integer  (usually 0 or 1) where as the range is a subset of the set  of real numbers.For example,for, for, forare sequences.
If for , then we would write  for the sequence. The symbolin is called an index and  is called the initial index. 
RANGE OF A SEQUENCE
The set of all distinct terms of a sequence is called its range.
Note: In a sequence , the number of terms of a sequence is always infinite. The range of a sequence may be a finite set. For example, if, then.The range of sequence , which is a finite set.
CONSTANT SEQUENCE
A sequence defined by  for all  is called a constant sequence. Thus
 is a constant sequence with, a singleton.


BOUNDED AND UNBOUNDED SEQUENCE
The sequence  is said to be bounded if and only if there exists a real number  such that
for each 
That is, if the range of the sequence is bounded.
The sequence is said to be unbounded if and only if it is not bounded.
Examples:(a) The sequence  is bounded, since   for each positive integer .
       (b) The sequence  is not bounded.
       (c) Every constant sequence is bounded.
CONVERGENT SEQUENCE
A sequence  is said to converge to the real number  if and only if for each , there exists a real number  ( depending on) such that 
.
The real number  is called the limit of the sequence .
The sequence  is said to be convergent if and only if there is a real number  such that  converges to
The sequence  is said to be divergent or to diverge if and only if it is not convergent.
Example:By definition show that the sequence  converges to .
Solution: Let  be given, and choose a real number  such that .Then for, we have . Hence 


Theorem: Every convergent sequence has a unique limit OR a sequence cannot converge to more than one limit.
Example:  Show that the sequence diverges. 
Solution: We have   .     
If , then for odd values of  we have   But if , then for even values of  we have . 
Consequently, for any  such that , there is no number  satisfying the definition of convergent sequence.

DIVERGENT SEQUENCE
(i)A sequence  is said to diverge to  if given any positive real number , there exists a
positive integer  (depending on ) such that

and we write 
(ii) A sequence  is said to diverge to  if given any positive real number , there exists 
a positive integer  (depending on ) such that

and we write 
(iii) A sequence is said to be a divergent sequence if it diverges to  or . 
That is,  or .  
Examples:(a) The sequences and  diverge to .
(b) The sequences and  diverge to .
Theorem:  Letbe a sequence,and  be a function defined onsuch that
.
If , then  diverges and . Thus
.
Example: Show that the sequence  diverges.  
Solution: Let. Then. Since, we conclude that. Hence, the sequence  diverges. 
OSCILLATORY SEQUENCES
If a sequence  neither converges to a finitenumber nor diverges to  or , it is called an oscillatory sequence. For example, the sequences  and  are oscillatory sequences.
NULL SEQUENCE
A sequence  is said to be a null sequence if it converges to zero. That is,. For example, the sequences  and are null sequences.
MONOTONIC SEQUENCES

(i) A sequence  is said to be increasing if and only if . 
That is, .
For example, the sequencesand are increasing.
(ii) A sequence   is said to be decreasing if and only if . 
That is, .
For example, the sequencesand are decreasing.
(iii) A sequence which is either increasing or decreasing is called a monotonic sequence.
For example, the sequences , andare monotonic.
Note that a sequence need not be increasing or decreasing. For example, the sequence  is neither increasing nor decreasing because it oscillates between  and 
Theorem: If  is a monotone bounded sequence, then it is convergent. 

1.2. PROPERTIES OF CONVERGENT SEQUENCES
Let  and  be convergent sequences. Then the sum , any scalar multiple , product  and the quotient (provided ) all converge, with 
(i) 
(ii) 
(iii) 
(iv) 
Example: Use the above theorem to prove that the sequence  is convergent and find the limit of the sequence.
Solution:     
We see that the sequence  is convergent and  and also the sequence  is convergent and.
Therefore,  . Thus the given sequence is convergent and its limit is.
Theorem:The SqueezingTheorem for Sequences
If and  is any sequence such that  for , then  converges, and moreover 
.
Examples:
1. Show that .
Solution: We know that . This implies that .
.
Since  and , it follows from the squeezing theorem for sequences that .

2. Show that . 
Solution: For , we have , so that 
.
Therefore,. Since  and , it follows from the squeezing theorem for sequences that .
3. because.
4. because.
5. because  and clearly .
Example: Using L’Hopital’s rule show that 
(a) 
28

(b)  is converges to 
(c)  is converges to 

Solution:
(a) . Thus,  is converges to .
. Thus,  is converges to .
(b) Let . Then .

.
Since then. Thus, converges to .
Theorem: (a) If  converges, then  is bounded.
                  (b) If is unbounded, then  diverges.
Note:(i).A bounded sequence may diverge. For example,  is bounded but it is not
convergent.
(ii). Abounded monotonic sequence is convergent.


Example: Prove that the sequenceis convergent.
Solution: The elements of the given sequence are:

We see that  and so the given sequence may be decreasing.If , i.e., .
If , then and if, then the sequence is decreasing and hence monotonic. Since   for all , we conclude that the sequence is bounded. Thus, the sequence is bounded monotonic sequence. Therefore, it is convergent. 

1.3. SUBSEQUENCE AND LIMIT POINTS
Let  be a given sequence. If  is a strictly increasing sequence of natural numbers (i.e., , then  is called a subsequence of .
Examples:
(i) The sequenceand areall subsequences of the sequence. 
(ii)  are all subsequences of a sequence 
Remark: 
(a) If is subsequenceofandis a subsequence of , then is a subsequence of 
(b) Every sequence is a subsequence of itself. 
A real number is called a limit point of a sequence  if and only if every neighborhood of contains infinitely many terms of the sequence.
That is, there exists  such that .
Note:
a) Limit point of a sequence is different from limit of a sequence.
b) If for  for finitely many values of , then   cannot bea limit point of .
c) Limit point of a sequence need not be a terms of a sequence.
For example, is a limit point of the sequence.
Example: Show that the sequence  has two limit points.
Solution: Let , then  
Thus every neighborhood of  contains all the odd terms (since each ) of sequence. Therefore  is a limit point of the sequence.
Also, every neighborhood of  contains all the even terms (since each ) of sequence. Therefore  is a limit point of the sequence.
Example: Show that the sequence has no limit point.
Solution:Let be anyreal number, then the neighborhood  of  contains at most one term of the sequence . Hence, is not a limit point of the sequence .

1.4. DEFINITION OF INFINITE SERIES
If is a sequence of numbers (complex or real), then the expression of the form                                             
(i.e., the sum of the terms of the sequence, which is infinite) is called an infinite series.
The numbers  are called the terms of the series.
The sum of the first  terms is
.
This expression is called the  partial sum of the series.
				
				  .
			  .		
						  .
						.
 are the first, second, third, fourth,… partial sums of the series.Thus  is called the sequence of partial sums of the infinite series . Therefore, to every infinite series , there corresponds a sequence of its partial sums.



Example: Compute the fourth partial sum for each of the following series.
a) 
b) 	
c) 
d) 
e) 
f) 


1.5. CONVERGENCE AND DIVERGENCE, PROPERTIES OF CONVERGENT SERIES.

CONVERGENCE AND DIVERGENCE OF SERIES
An infinite series converges or diverges according as the sequence  of partial sums
converges or diverges.   
Definitions: 
(i) The series  converges (or is said to be convergent) if the sequence  of its partial sums converges. Thus, is convergent if .
If , then the number  is called its value or sum, and we write 
.
(ii) The series  diverges (or is said to be divergent) if the sequence of its partial sums diverges. Thus, is divergent if .
Example:Discuss the convergence or otherwise of the series
.
Solution:Here for . Putting , we have 
.
Hence, 
.
Thus, . 
Since , it follows that the given series converges and the sum is . That is,
.
Note: (i) The series  is called a telescoping series because when we write the
partial sums, all except the first and last terms cancel.
           (ii) The series  is known as harmonic series. 
Example: Show that the series diverges.
Solution: Observe that
;
;
.
In general, 


.
Since , it follows that the sequence  of partial sums is unbounded.
Hence, diverges.

A DIVERGENCE TEST
Theorem:If the infinite series  is converges, then .
Proof: Let  be the sequence of partial sums for and. Therefore,
 such that. Also, . Then 
.
So . Therefore, .

Note: The converse of the above theoremis false.That is, if   it does not follow that the series is necessarily convergent.In other words it is possible to have a divergent series for which . For example,, but  diverges.
Theorem: If  then the series  is divergent.
Proof: Assume that  is convergent, then by above theorem. But this contradicts the hypothesis. Therefore, the series is divergent.
Example: Show that the following two series are divergent.
a) 
b) 
c) 

Solution:(a). Thus, the series is divergent.
(b).which
 does not exist. Therefore, the series is divergent.

GEOMETRIC SERIES
A geometric series is a series of the form, where  and are constants and . The convergence of a geometric series depends entirely on the choice of .
Theorem (Geometric Series Theorem)
Let  be any number, and let  and . Then the geometric series converges if and only if .
For ,
		.
Note: The number  is called the ratio of the geometric series. By the above theorem, the sum of a convergent geometric series is equal to the first term () divided by .
Example:Find the sum of the following series
(a) 
(b)    (Ans: )   
(c)     (Ans: )                                      

Remarks: 
(i)  Not all geometric series converges. For example,  diverges because
.
(ii) Geometric series allows us to express any repeating decimal as a fraction. For example, 
.
The series  is geometric with . Thus the series converges (since
). Since the first term is , it follows that .

COMBINATION OF SERIES
Theorem:
(a) If and converge, then  also converges and
.
(b) If  converges and , then also converges, and .
(c) If  diverges and , then  also diverges. For example,  diverges.
(d) If  converges and  diverges, then  is divergent.For example,  diverges.
(e) If both  are divergent, then  may or may not be convergent. 
For example, if , then which is divergent. But, if and, thenwhich is convergent.
Example: Show that the series  converges, and find its sum.
Solution: Since the series is geometric, we have  , and we know that . This implies that . Therefore, the series
converges and .
Exercise:
1. Find a formula for the partial sums of the series. For each series determine the partial sums have a limit. If so, find the sum of the series.
a) 		
b) 
c) 		
d) 
e) 
2. Express the repeating decimal as fraction
a) 
b) …
c) …
d) …
e) …


1.6. A NONNEGATIVE TERM SERIES
A series whose terms are nonnegative is called nonnegative term series. The partial sums  of a nonnegative term series  form an increasing sequence. That is, 
 for . Thus if is bounded, then exists. This implies that  converges. By contrast, if  is unbounded, then  cannot exist. This implies that diverges.  		
1.7. CONVERGENCE TEST FOR NON NEGATIVE(POSITIVE ) TERM SERIES
a) INTEGRAL TEST
Theorem: Let  be a nonnegative sequence, and let  be a continuous and decreasing
function defined on  such that  for . Then the series  converges if
and only if the improper integral  is converges. That is, 
(i) If  converges, then the series  converges.
(ii) If diverges, then the series  diverges.
Example:Show that the series diverges.
Solution:Let  for . Then  is continuous and decreasing on , and  for . 
Now, 
.
This implies that  diverges. Hence, by the integral test, the series  diverges.
Example: Show that the p-series  converges.
Solution: If, then. This implies that diverges.
If , then  which we know diverges (harmonic series). 
Assume that . Let  for . Then  is continuous and decreasing on  and  for . 
Now, .
If , then exists, and if , then  does not exist.
Hence, converges if , and diverges if . Therefore, the series  converges if , and diverges if .
For example, the series converges; and the series diverges.
Note: We should not inter from the integral test that the sum of the series is equal tothe
value of the integral. 
In factwhereas. Therefore, in general,.
Example: Determine whether the series  converges or diverges.
Solution: The function is nonnegative and continuous for. But it is not
obvious whether is decreasing or not. So we compute the derivative . Thus
 when . It follows that  is decreasing when .  And so we apply theintegral 
test.
. Since the improper integral diverges, then the series  also diverges by the integral test.
Example: Determine whether the series  is convergent or divergent.
Solution:Let . We see that  is continuous, decreasing &nonnegative for .So we apply the integral test.Hence,
.
.
Since  we can use the L’Hopitals rule and we obtain .
Therefore,  and so the series  is convergent by integral test.
Exercise: Determine whether the given series are convergent or divergent using integral test.
a) 
b) 			
c) 
d) 
e) 


b) COMPARISON TEST
Theorem: Suppose that are series with nonnegative terms.
(i) Ifconverges and for all , then converges, and .
(ii) If  diverges and  for all , then diverges.  

Example: Determine whether the following series are convergent or divergent.
a) 
b) 
c) 
d) 

Solution:
a) Observe that for all and converges since   is a -serieswith. Therefore, by comparison test theorem converges.
b &c): Exercise
Example:Show that the series  converges. 
Solution:  Here we notice thatfor . But we notice thatconverges. This means that also converges. So by the comparison test the given series converges.

c) LIMIT COMPARISON TEST
Theorem: Let be two series of nonnegative terms. Suppose 
, where is a positive number.
(i) If  converges, then converges.
(ii) If  diverges, then diverges.
Example: Test whether the following series are convergent or divergent.
a) 
b) 
c) 

Solution: 
a) Let . Now, take , then
 and  is a convergent -series (with ). Hence, by the limit comparison test (i), the series  converges.
b) Exercise
Exercise: Use the integral test, the comparison test or limit comparison test to determine whether the series converges or diverges.
a) 
b) 
c) 
d) 
e) 
f) 
g) 

d) RATIO TEST
Theorem: Let  be a nonnegative series. Assume thatfor all  and that
 (possibly ).
(a) If, then converges.
(b) If  , then diverges.
(c) If, then from this test alone we cannot draw any conclusion about the convergence or divergence of.
Example: Show that the seriesconverges.
Solution: Let . Then . 
So,  Since , the series converges.
Example: Show that the series diverges.
Solution:Exercise

e) ROOT TEST
Theorem:   Let be a nonnegative series and assume that
 (possibly ).
(a) If , then  converges.    
(b) If  , then  diverges.
(c) If , then from this test alone we cannot draw any conclusion about the convergence or divergence of .
Example: Show that
(a) 
(b)  converges 
(c) diverges

Solution: 
(a) Taking the  roots of the terms of the series, we get 
. Thus, the root test implies that the seriesconverges.
(b) . This implies that the series diverges by root test.
Note:Ratio Test is likely to be effective when the factorials or powers appear in the terms of the series, whereas Root Testis likely to be effective when powers (and not factorials) appear in the terms of the series. So, Ratio test is more frequently used than the Root Test. 
Exercise: Determinewhether the given series are convergent or divergent.
a) 
b) 
c) 
d) 
1.8. 

1.9. ALTERNATING SERIES AND ALTERNATING SERIES TEST
If the terms in a series are alternately positive and negative, we call the series alternating 
series. For example, the series
and
are alternating series.
Theorem: (Alternating series test)
If  be a decreasing sequence of positive numbers such that . Then the alternating series  and  converge.
Example:Show that
a) 
b)  converges  
c)  converges
Solution:
(a) Since  is a decreasing, nonnegative sequence and , the series satisfies the hypothesis of the alternating series test. Hence, the series  converges.   
(b) Exercise 

1.10. ABSOLUTE AND CONDITIONAL CONVERGENCE
Theorem: If  converges, then  converges.
Example:Show that  converges.
Solution: Since  for, and since  converges (because it is a -series with ), it follows that by the comparison test  converges. So, by the above theorem, the given series also converges.
Definition: Let  be a convergent series.
(i) If  converges, we say that the series  converges absolutely.
(ii) If  diverges, we say that the series  converges conditionally. 
Examples:(i) The series  converges absolutely.
(ii) The series converges conditionally.
Note: All convergent nonnegative term series converge absolutely.

1.11. GENERALIZED CONVERGENCE TEST
Theorem: Let  be a series.
(a) Generalized Comparison Test: 
If  for , and if  converges, then  converges (absolutely).

(b) Generalized Limit Comparison Test:
 If where  is a positive number, and if  converges, then converges (absolutely).

(c) Generalized Ratio Test: 
Suppose that  for and that). 
· If , then  converges (absolutely)
· If , then  diverges.
· If , then from this test alone we cannot draw any conclusion about the convergence of the series.

(d) Generalized Root Test:
Suppose that  for  and that ). 
· If , then  converges (absolutely).
· If , then  diverges.
· If , then from this test alone we cannot draw any conclusion about the convergence of the series.
Example:Show that
(i) Converges absolutely for; 
(ii) Converges conditionally for; and 
(iii)Diverges for and for.
Solution: If , then the series obviously converges.
If , then
.
Therefore, the generalized ratio test implies that the series converges absolutely for and diverges for. 
For, the series becomes the harmonic serieswhich diverges. 
For , the series becomes which converges (alternating series).Since
 which diverges, we conclude that  converges conditionally.   
Example: Show that. 
(i) Converges absolutely for ; 
(ii) Converges conditionally for ; and 
(iii)Diverges for .
[bookmark: _GoBack]











CHAPTER-2: POWER SERIES
2.1. DEFINITION OF POWER SERIES AT ANY and.
A power series (about or centered at is a series of the form
                                   (1)
where  is a variable and the  are constants called the coefficient of the series. 
If , we obtain a power series (centered at )
                         (2)
Example:are power series.
Note:Every power series defines a function whose domain is the collection of those of for which the power series converges.
Example: For what values of x the following series converges?
a) 
b) 
c) 
d) 
e) 

Solution:
a) Let . If , then
.
By the generalized ratio test, the series diverges when . Thus the given series converges only when .
b) Let . Then  
.
By the generalized ratio test, the given series is absolutely convergent (and therefore convergent) when  and divergent when .
Now, , so the series converges when  and diverges when  or .
The ratio test gives no information when , so we must consider  and  separately.
If , the series becomes   which is divergent. If , the series is   which converges. Thus the given power series converges for .

2.2. CONVERGENCE AND DIVERGENCE, RADIUS AND INTERVAL OF CONVERGENCE
Theorem: For a given power series , there are only three possibilities:
(i) The series converges only when ;
(ii) The series converges for all ;
(iii) There is a positive number  such that the series converges if  and diverges if .
The number  in case (iii) is called the radius of convergence of the power series.By convention, the radius of convergence   in case (i) and  in case (ii).
The interval of convergence of a power series is the interval that consists of all values of 
for which the series converges. In case (i) the interval consists of just a single point ; in case
(ii)the interval is, and in case (iii) the interval is one of ,          
.
Remark: When , anything can happen- the series might converge at one or both
endpoints, or it might diverge at both endpoint.
Example: We summarize here the radius and interval of convergence for each of the
examples already considered as follows.
	Power Series
	Radius of Convergence
	Interval of convergence

	
	
	

	
	
	

	
	
	

	
	
	



In general, the Ratio Test (or sometimes the Root Test) should be used to determine the radius of convergence . 
The Ratio Test and Root Test always fail when  is an endpoint of the interval of convergence. So, the endpoint must be checked with some other test.
Example: Find the radius of convergence and interval of convergence of the following series 
a) 
b) 
c) 

Solution:
a)  Let . Then  
.
By the generalized ratio test, the given series converges if  and divergesif . Thus it converges  and diverges if . Thus the radius of convergence is . This implies that the series converges in the interval . But we must now test for convergence at the endpoint of the interval. 
If , the series becomes  which diverges (observe that it is a p-series with  or use integral test).
If , the series is  which converges when . So, the interval of convergence is .

b) Let . Then  
.
By the generalized ratio test, the given series converges if  and diverges if . So, it converges  and diverges if . Thus the radius of convergence is . The inequality  can be written as . So, we test the series at the endpoints  and . 
When, the series is which diverges by divergence test ().
When , the series is  which also diverges by divergence test. Thus the series converges only when when . So, the interval of convergence is . 
Exercise: Find the radius of convergence and interval of convergence of the series
a) 
b) 
c) 
d) 
e) 
f) 
g) 
h) 
2.1. 
2.3. REPRESENTATIONS OF FUNCTIONS AS POWER SERIES 
Here we represent certain types of functions as sums of power series by manipulating geometric series or by differentiating or integrating such a series. 
Since  is a geometric series with  and  then 
  when .         (*)
Therefore, the function  is expressed as a sum of a power series when .
Example:Express  as the sum of a power series.
Solution: Replacing  by  in equation (*), we have
. 
Therefore,.
Example: Express  as the sum of a power series and find the interval of convergence.
Solution: Replacing  by - in equation (*), we have
. 
Since this is a geometric series with  and , it converges when). 
Therefore, the interval of convergence is .
Example: Find a power series representation and interval of convergence forthe series

a) 
b) 

Solution: 
a) To put this function in the form of equation (*), we first factor  from the denominator
.
This series converges when i.e., . So the interval of convergence is 
b) .
. So the interval of convergence is 

2.4. DIFFERENTIATION AND INTEGRATION OF POWER SERIES
The sum of a power series is a function  whose domain is the interval of convergence of the series. We would like to differentiate and integrate such functions, and the following theorem says that we can do so differentiating or integrating each individual term in the series. This is called term-by-term differentiation and integration.
Theorem: (Differentiation and integration theorem for Power Series) 
If the power series  has radius of convergence, then the function  defined by  is differentiable (and therefore continuous) on the interval  and 
(i) 
(ii) .
The radii of convergence of the power series in equation (i) and (ii) are both .
Note:
1) Equations (i) and (ii) in the above theorem can be rewritten in the form
(iii) 
(iv) .
2) The radius of convergence remains the same when a power series is differentiated or integrated, this does not mean that the interval of convergence remains the same. It may happen that the original series converges at an endpoint, whereas the differentiated series diverges there.
Example: Express  as the sum of a power series
Solution:  We know that 
Differentiating each side of the equation, we have 
We can replace n by   and write the answer as 


Example –8: Show that  




Solution: The series   converges for all .  The Differentiation Theorem tells us that  converges as well and that 
We see that  for all real values of . The function  satisfies the differential equation 

From  we see that 
[Remember that we take  even when  for convenience in writing the general term]
     i.e.   and we have the desired result.

Moreover,  for all real values of 
The radius of convergence is the same as the original series. i.e. R = 1.
Theorem-3: (Integration Theorem for Power Series)


Let   be a power series with radius of convergence 

Then   has the same radius of convergence, and 



Example –9: Show that  


Solution:  


Replacing  by – t in this equation, we obtain




Hence  


Example –10: Show that  

Solution: If   Therefore since we have 

		
Then the Integration Theorem yields 	




In expanded form the power Series 
Remark: The radius of convergence remains the same when a power series is differentiated or integrated, this does not mean that the interval of convergence remains the same. It may happen that the original series converges at an endpoint, whereas the differentiated series diverges there. 

Exercise-3: 1. Express the following functions as the sum of a power series. 
a.            b.            c.         d.
2. Find a power series expansion for  and use it to evaluate.
3. Evaluate the following indefinite integral as a power series. 
               a.                        b.  

2.2. Taylor Series, Taylor Polynomial and Application

Let  be the function defined by

 .
Let’s try to determine what the coefficients  must be in terms of function  .
If we put  in equation (1), 
Successive differentiation of the function in (1) and substitute of  in equation gives.



If we continue to differentiate and substitute, we obtain 
Solving this equation for the nth coefficient  we get    
  .  .  .                                             (*)
(*) is valid even for 
Theorem-4: If  has a power series representation (expansion) at a, that is, 
                    if  then its coefficients are given by the
                   formula 	
= 

and this series is called the Taylor Series of the function  (or about  or centered at ).
For the special case  the Taylor series becomes

nd this series is called the Maclaurin Series.

2.2.1. Polynomial Approximation
Define a polynomial  of degree (at most n) by the formula 

     = 
This polynomial  is called the  Taylor polynomial of  at 
It is possible to measure the accuracy of this polynomial approximation. 
Given   Let 
                                                          = remainder (error) made in approximating. 

Example –11: Construct the Taylor polynomial for  
Then determine     a.    and   b. 


Solution: and  for all n.
Thus, 

= = 

As a result, = 

For   = 
We expect  to approximate . Since the value of  is 2.71828 (accurate to six digits) and since  . We find that  approximates  with an error of about 
Example –12:Find the Taylor polynomial of degree 5 for   at   .     
,                   


Therefore, 
                              = 
Theorem-5: (Taylor’s Inequality)
If on some interval I containing  for some constant M, then  
  for all  in .
Note: If  then the Taylor series of the function  converges to 
Example -13: Find the Maclaurin series for  and prove that it represents for all 
Solution: ,               


Since the derivatives repeat in a cycle of four, we can write the Maclaurin series as follows.


Hence   
Since , we have 1, for all .   i.e.
Hence, 
But If .  
It follows from the sandwich theorem that   and therefore,   for all values of . 
Therefore,  is equal to the sum of its Maclaurin series. That is, for all 



Similarly   for all 
Example-14: Find the Maclaurin series for  is any real number and.
Solution:




Thus, the Maclaurin series of  is 
Hence,   and it is called Binomial series.
If its  term is , then 
If 
                             = 
Thus, by the generalized ratio test, the binomial series converges if  and diverges 
Theorem-6(Binomial series): If  is any real number and , then 

Example-15:  a. 
b. 

Example-16:  Find the Maclaurin series for the function and its radius of convergence.
Solution:
Using the binomial series with  and with  replaced by  we have

 = 
= 
From the binomial series, the series converges when  .  i.e 
Thus, the radius of convergence is 
Example-17:  a. Approximate the function    by a Taylor polynomial of degree 2 at                    			
b, How accurate is this approximation when   (Use Taylor’s inequality).
 Solution: a. 


Thus, the second degree Taylor polynomial is 

           =  
Hence, the desired approximation is 

b, Using the Taylor’s inequality with    and ,  we have 
   where  
Since   we have   and so 
Hence, take 
Also 
Then the Taylor inequality gives 

Thus, if then approximation in part (a) is accurate to within 0.0004.
Exercise-4:
1. Find the Maclaurin Series for f(x) and find the associated radius
of convergence.
   a    b.        c. 
2.  Find the Taylor Series for f(x) centered at the given values 
    a.           b. 

3. i. Approximate f  by a Taylor polynomial with degree n at the number .
     ii. Use Taylor in equality to estimate the accuracy of the approximation  when    
         x lies in the given interval.
a. 
b. 
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